THREE YEAR B.A./B.Sc./B.Com. (CBCS) DEGREE EXAMINATION APRIL/MAY 2024.

SECOND SEMESTER

Mathematics (Minor)

Course - III: DIFFERENTIAL EQUATIONS

(w.e.f. 2023-24 admitted batch)

Time: Three hours

Maximum: 70 marks

(No additional sheet will be supplied)

SECTION A — $(5 \times 4 = 20 \text{ marks})$

Answer any FIVE of the following questions.

- 1. Solve $(x+2y^2)\frac{dy}{dx} = y$.
- 2. Solve (1 + xy)x dy + (1 yx)y dx = 0.
- 3. Show that the family of Confocal conics $\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} = 1$ is self orthogonal. Where 'h' being parameter.
- 4. Solve (px y)(py + x) = 2p.
- 5. Solve $(D^3 5D^2 + 8D 4)y = e^{2x}$.
- (6.) Solve $(D^3 + 9)y = \cos^3 x$.
 - 7. Solve $(D^2 + D + 1)y = x^3$.
- Solve $(D^4-1)y=e^x\cos x$.
- Solve $(D^2 + 1) = y = \cos ec x$ by the method of variation of parameters.
 - 10. Solve $(x^2D^2 2xD 4)y = x^2$.

SECTION B —
$$(5 \times 10 = 50 \text{ marks})$$

Answer ALL questions. Each question carries 10 marks.

11. Solve $\frac{dy}{dx}(x^3y^3 + xy) = 1$.

Or

12. Solve (1 + xy)x dy + (1 - xy)y dx = 0.

13. Solve $y = 2xp + x^2p^4$.

Or

- 14. Find the orthogonal trajectories of the family of cardioids $r = a(1 \cos \theta)$ Where 'a' is the parameter.
- 15. Solve $(D^2 3D + 2)y = \cos 3x \cdot \cos 2x$.

Or

- 16. Solve $(D^2 + 16)y = e^{-3x} + \cos^4 x$.
- 17. Solve $\frac{d^2y}{dx^2} 7\frac{dy}{dx} + 6y = e^{2x}(1+x)$.

Or

- 18. Solve $(D^2 + 2D + 1)y = x \cos x$.
- 19. Solve $(D^2 + a^2)y = \sec ax$ by the method of variation of parameters.

Or

20. Solve $(x^2D^2 + 3xD + 1)y = \frac{1}{(1-x)^2}$.